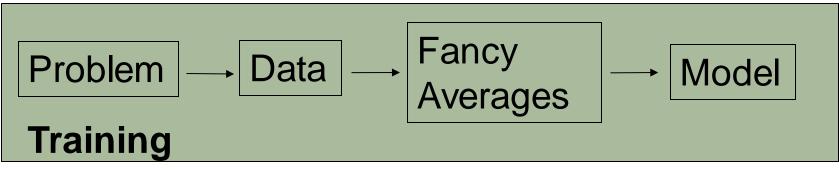


Muligheter med maskin læring og 'stor data' i klimatilpasning

Alex Lenkoski, Forskningsleder + Colleagues

Modeling and Data – What is it honestly?



New Scenario
$$\rightarrow$$
 Model \rightarrow Basis for action Inference

Motivations for modelling extremes (by A. Davison)

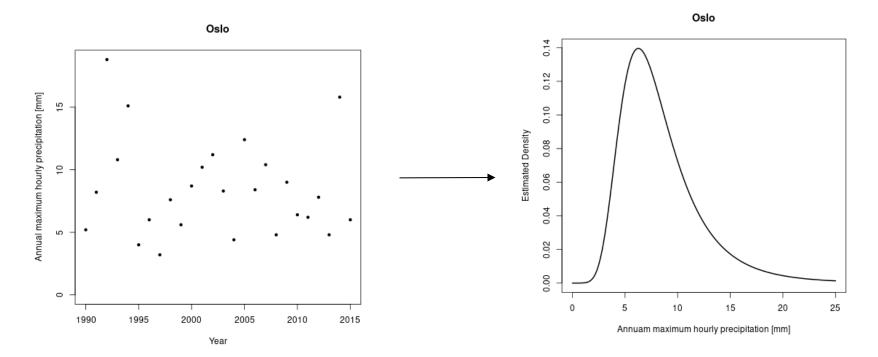
- pointwise maps of return levels ("should I buy this house?")
- estimation of probability of rare complex events ("what is the risk of insuring these houses?")
- □ detection/attribution ("is the floodwater in my hall caused by climate change?")
- □ short range forecasting ("should I leave the house?")

A down-in-the trenches rule of thumb for method choice

Sample Size	Method	"Discipline"
Less than 30	Average	Statistics
30 to 1.000	Regression	Statistics
1.000 to 10.000	GAMsLasso	Statistics ML
10K to 1M	 Random Forests Gradient Boosting 	ML
More than 1M	Neural Nets	AI

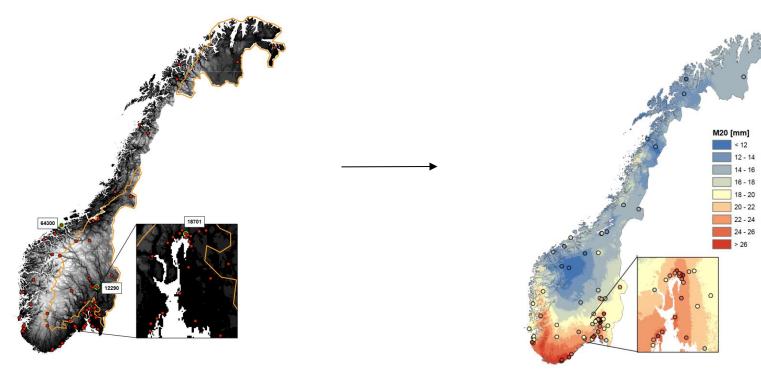
- When we discuss climate extremes, we never have 1M observations
- This means ML/AI methods are not immediately, directly relevant.

One dimensional extreme



5

Spatial Extremes – Combining data from 70 stations



[€]NR

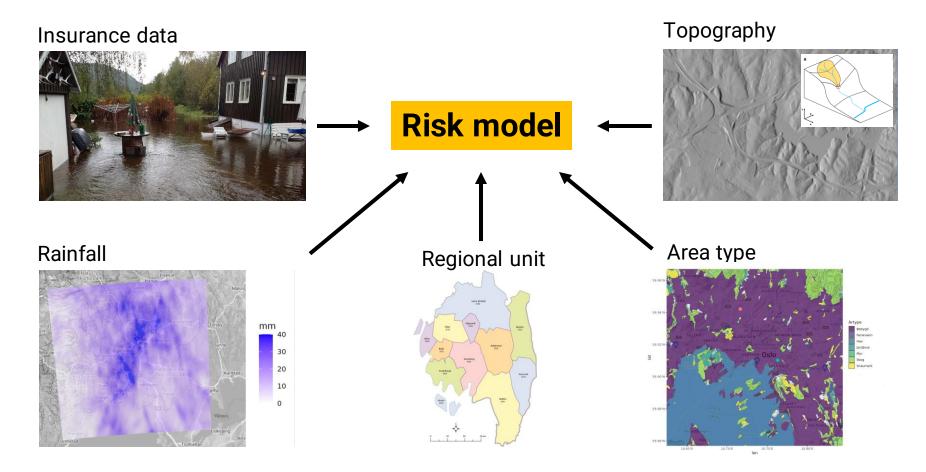
Return levels across durations

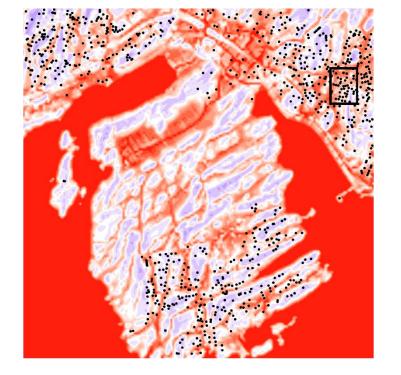
NORSK KLIMASERVIC	SENTER			Søk		Q Norsk/English
KLIMAFRAMSKRIVNINGER \checkmark	VÆRDATA OG	STATISTIKK 🗸	KLIMAPROFILER 🗸	RAPPORTER 🗸	LÆR MER ✓	OM OSS / ABOUT 🗸
Oslo - Blindern Plu X						
		GRAF	TABELL	UTVIDET TABELL		
Kvalitetsklasse: God (1)						
	Alle tilgjengelige v	arigheter	* mm		•	0
			Oslo – Blindern Plu (S			=
150		Data fra 1	968 - 2023, 53 ses. Oppdater	01.01.2024.		
125						
100						
Ë 75						
50						
25						
0 0 100	200 300	400 500	600 700 Varigheter (minutt	800 900 1000 r)	1100 120	0 1300 1400
	— 2 i	ir — 5 år — 10 år	— 20 år — 25 år —	50 år — 100 år — 200 å	ir	

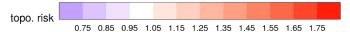
Roksvåg, T., Lutz, J., Grinde, L., Dyrrdal, A. V., & Thorarinsdottir, T. L. (2021). Consistent intensity-duration-frequency curves by post-processing of estimated Bayesian posterior quantiles. *Journal of Hydrology*, 603

Physical Climate Risk Example – Collaboration with Gjensidige

- Insurance data (Gjensidige):
- 12 years of data, 1.7 million contracts, 32 500 claims
- Individual building attributes and coordinates

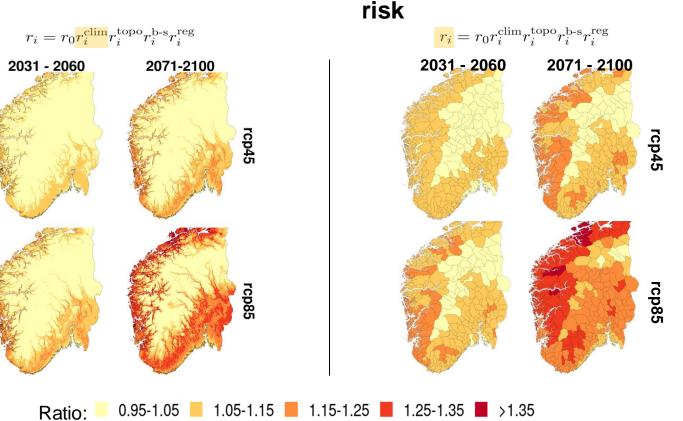






Full resolution contract risk values are fictitious and meant for illustration!

Provided by Norkart



Projected change of total

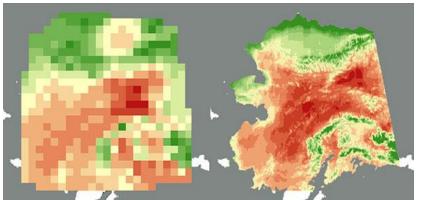
[€]NR

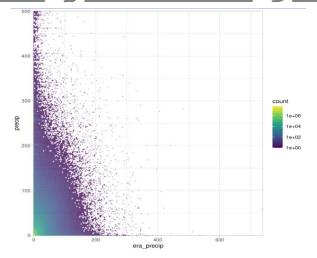
Heinrich-Mertsching, C., Wahl, J. C., Ordoñez, A., Stien, M., Elvsborg, J., Haug, O., & Thorarinsdottir, T. L. (2023). Assessing present and future risk of water damage using building attributes, meteorology, and topography. *Journal of the Royal Statistical Society Series C: Applied Statistics*, 72(4), 809-828.

ttps://uaf-snap.org/how-do-we-do-it/downscaling

Stochastic downscaling

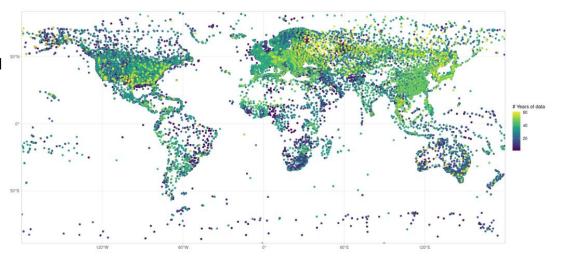
- What it is: Guessing what is happening inside of each grid cell
- Why we need it: Grid cell averages are too smooth. this leads to
 - Underestimation of variance
 - Underestimation of extremes
 - Mean bias in temperature
 - Etc.





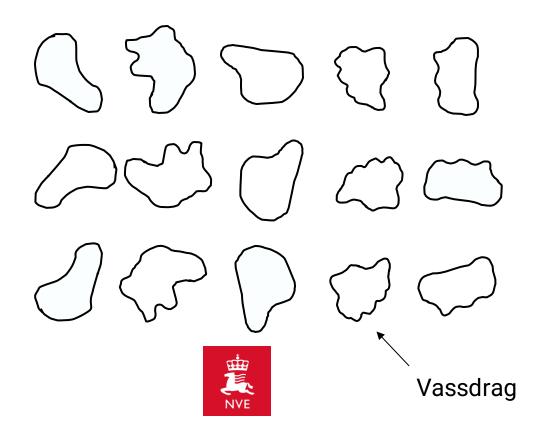
Stochastic downscaling

- Model the statistical distribution of point-observations from weather stations, using information from gridded reanalysis data as covariates
- Reanalysis data: ERA5
- Weather station data: GSOD¹
- DEM data: ETOPO²
- Method: Work in progress



1) Global Summary of the Day, <u>https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516</u>

2) Earth TOPOgraphy, https://www.ncei.noaa.gov/products/etopo-global-relief-model



småkraft°

Posisjon, areal, klimaforhold, gradient, elvelengde, % skog, fjell, innsjø

Replacing Physical Hydrological with Neural Nets

NeuralHydrology — A Python library for Deep Learning research in hydrology

Frederik Kratzert¹, Martin Gauch², Grey Nearing¹, and Daniel Klotz²

1 Google Research 2 Institute for Machine Learning, Johannes Kepler University Linz, Linz, Austria

DOI: 10.21105/joss.04050

Software

- Review d'
- Repository I^a
- Archive ௴

Summary and statement of need

Since ancient times humans have strived to describe environmental processes related to water (Angelakis et al., 2012; Biswas, 1970). Throughout this history, hydrologists built various process-based prediction models that simulate processes from soil moisture to streamflow

- Experimenting with replacing physical hydrological models with LSTMs
- Have been positively surprised with the quality of results, especially for "left out" basins

•

Conclusions

- There can be no debating that data will play a substantial role in helping address the problems of climate adaptation
- The Stats/ML/AI distinction is largely meaningless which method to use is driven by the size of the data at hand
- Yet, extremes by their very nature will be small in size
- Therefore, the most advanced techniques will be used to process the data sources that feed into our extreme analyses, not our extreme analysis itself.